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Abstract

Multi-block structured mesh generation remains one of the most popular meshing techniques because of its superior simulation
quality but it is difficult to apply when dealing with complex three dimensional (3D) domains. To this end, a hybrid blocking
approach, combining the medial axis based method with level set isosurface is presented and applied to mesh complex 3D external
flow domains. Secondly, a hierarchical geometry handling approach is demonstrated which makes use of the lower order modeling,
overset meshes and zonal blocking to reduce the meshing and modeling effort. Typical external aerodynamics cases have been
showcased to describe how such techniques can be used for efficiently addressing modern industrial meshing challenges.
c© 2016 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of organizing committee of the 25th International Meshing Roundtable (IMR25).
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1. Introduction

Mesh generation has remained one of the most time consuming steps for flow simulations and faces even bigger
challenges with the ever increasing need for simulating complex 3D flows. There is a trade-off between the mesh
quality, ease of generation, solver requirements and parallel mesh generation when choosing amongst the structured
and unstructured mesh types. Unstructured meshes offer more flexibility for meshing complex 3D domains. Structured
meshes, on the other hand, offer higher numerical accuracy and less storage than the unstructured meshes. They also
allow relatively easy implementation of high-order finite volume and finite difference schemes.

Multi-block structured mesh generation is among the most widely used meshing techniques in flow simulations.
This is essentially a two-stage process. In the first stage, a suitable blocking topology is generated which divides the
complex domain into simple sub-domains. The resulting blocks are subsequently meshed. This structured blocking
offers an efficient meshing strategy for topologically simple configurations and standard templates exist for partition-
ing of such domains. For example, the H-O-H type blocking is commonly used to mesh the turbine blade passage.
However, the modern day design challenges demand the computational analysis of more realistic geometries. Aero-
engine domains, for example, involving the fan, outlet guide vanes, gearbox shaft and nozzle coupled with wing,
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flap and pylon are now being used for flow simulations. Meshing such multiply linked and more diverse geometries
requires significant user intervention, or writing of templates as part of a library [1]. Thus, an automatic or semi-
automatic blocking strategy can be beneficial to reduce the CFD design cycle time and could be a better alternative to
the unstructured or hybrid meshing methods.

Fully automatic 3D block topology generation is a complex problem and currently there is no ideal block topol-
ogy algorithm with all the desired features for structured mesh generation. However various automatic blocking
approaches have been proposed with varying levels of automation and geometric complexity handling. This include
approaches based on medial axis [2–5], paving/plastering [6,7] and more recently methods based on cross/frame field
[8,9].

The medial axis transform (MAT) based algorithms for the domain decomposition have been presented in, for
example, [2–5]. Here the medial axis is generated using the Voronoi based method. A subdivision is created resulting
in one block for each medial vertex, medial edge and medial face. A midpoint subdivision is then used for meshing
the blocks. An alternative has been presented by Rigby [10], called the ‘TopMaker’ approach, which makes use of
medial vertices and parts of medial axis to block the domain. Medial vertices are defined as the points which are
equidistant from three locations form the domain boundary. Consequently, six types of medial edges and appropriate
rules are defined for creating the blocks. Further enhancements have been included to produce a good quality mesh
however this technique has yet to be extended for 3D.

Distance field based approaches are also widely used for the medial axis approximation and domain decomposition
[11–13]. A hybrid approach called differential MAT or d-MAT approach is presented in Xia and Tucker [14,15]. Here,
the hyperbolic-natured eikonal, level set equation is used to calculate the distance field [16]. Medial axis point clouds
are then extracted from the Laplacian or Hessian determinant of the distance field. A thinning algorithm is then used
for thinning the point clouds into curves and surfaces. The method is illustrated in the Figure 1(a-c) for a simple
domain. Such a hybrid approach thus avoids complexity of pure geometric approach and provides more accuracy
than the pure image thinning algorithms. The differential equation based distance field and subsequent medial axis
approximations have the advantage that a customized medial axis can be computed by manipulating the boundary
conditions. This is shown in Figure 1(d) where the distance field relative to the part having the wall boundary condition
is computed. This results in the simpler medial axis represented by the red curves in the Figure 1(f) thus avoiding
triangular blocks encountered in, for example, Figure 1(c). In addition to the collision of wave fronts forming the
compression shocks i.e. the medial axis, the expansion waves shown in the Figure 1(e) can be utilized to aid the
blocking process. The expansion features are connected to the nearest ‘medial vertex’; that is if that point lies within
sight of the fan caused by the expansion feature. If not, it is connected to the nearest point on the shock feature
topology(see green lines as Rule 1 in Figure 1(f)). Rule 2 is borrowed from the TopMaker method [10]; Hanging
features (features which are not connected to anything) are extended to the nearest point on the geometry. This is
shown by the green line in Figure 1(g).

Recent advancements in mesh generation are the methods based on the cross-fields (frame fields in 3D). A cross
field is defined by assigning a set of four unit vectors to points at the discrete locations. These unit vectors form a
regular cross on the tangent plane. Thus the size and the orientation of the quadrilateral cells can be specified by the
cross field. A number of approaches have been put forward for 2D and 3D cross field based domain decomposition and
mesh generation. To generate the block topology, the partitioning created by connecting the cross-field streamlines
to the singularities can be used. The resulting blocks of the cross field can then be mapped to a grid. Such methods
have been presented in, for example, [8,17–21]. The cross field approach towards domain decomposition and mesh
generation is novel and efficient but quite complex and expensive. LayTracks3D [22], is a hybrid hexahedral meshing
method combining medial axis based decomposition and the advancing front method. This technique produces good
quality hexahedral meshes but degenerate cells can be formed around the sharp concave features.

Malcevic [23] presents another automated blocking strategy based on a Cartesian fitting method. While preserving
the topology definition, a forward geometry simplification is performed followed by fitting the model into a Cartesian
framework. The next step is blocking the domain after which the blocked model is mapped back on to the original
geometry. Further operations such as removing singularities by J-grid wrapping are performed to enhance the mesh
quality. This technique has been applied for meshing the end-wall cavities found in turbomachinery. This technique
is very simple and but has only been demonstrated for 2D cases so far. The method sometimes produces some
unnecessary mesh clustering across the block interfaces.
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Fig. 1: d-MAT method and blocking; (a) distance field of a simple domain (b) medial axis extraction through the distance field Laplacian (c) point
cloud thinning (d) simplified medial axis (e) shock and expansion features of the wave fronts (f) blocking rule 1 (g) blocking rule 2.

An assessment of various automatic block topology generation techniques surveyed above has been performed in
[24,25]. The comparison has been carried out using an adjoint based error analysis of the meshes generated by these
block topologies. It is found that, in general, the medial axis based approaches provide optimal blocking and yields
better accuracy in computing the functional of interest. Mostly, domains having internal flows were used for this
assessment. However, the medial axis based methods may not always yield an optimal block topology when dealing
with complex 3D geometries and external flows. To overcome this limitation, a hybrid blocking technique is illustrated
which makes use of the distance field isosurafce in addition to the medial axis transform. This is demonstrated using
a wing-body-tail and a jet-wing-flap configurations. In addition to that, to reduce the meshing effort, a hierarchical
geometry handling approach is also defined and applied to an engine-wing-flap configuration. These approaches are
described next.

2. Methodology

2.1. Novel hybrid blocking

Consider an aero-engine jet-wing-flap (JWF) domain with a far-field as shown in the Figure 2. The medial axis
close to the JWF geometry is shown in the enlarged view of 2D slice of domain in the Figure 2. Here the distance
field and the corresponding medial axis is computed with respect to the geometry and the cylindrical far-field thus
avoiding effect of the inlet and exit boundaries. The solid lines represent the shock features i.e. the medial axis and
the dashed lines show the expansion features. Following this medial axis branches and even connecting the hanging
and expansion features, a poor quality blocking would be achieved. This is also because, to generate the blocks, very
small branches of the medial axis between the internal aeroengine geometry parts would have to be combined with
very large branches between the aeroengine and the far-field.

To overcome this limitation, the distance field function d can be used. An isosurface (contour in 2D) of d is
wrapped around the geometry to facilitate the MAT based block topology generation. The wall distance computation
is an intermediate step in the distance field based medial axis approximation and hence is available for use without any
extra cost. Thus using an isosurface of the distance field instead of the farfield for the medial axis computation can
significantly improve the medial axis based blocking. The hybrid blocking procedure is described below with the help
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Fig. 2: Jet-wing-flap: medial axis transform (compression shock) and expansion features close to the geometry.

of a simple 2D JWF geomtery. The extension of this methodology to the 3D cases also follows the same procedure as
demonstrated later.

• The distance field is computed around the domain of interest as shown in the Figure 3(a). An exact equation for
the wall distance d is the hyperbolic eikonal equation which models the front propagation from the surface at
unit velocity.

|Od| = 1 + ΓO2d (1)

where Γ −→ 0 yielding viscosity solutions. The first arrival time of the front for a unit velocity is equal to the
wall distance. The eikonal equation is solved using a fast marching method [14]. A suitable isosurface is then
extracted from d. This isosurface selection is currently arbitrary but it can be linked to a criteria. For example,
the width of the shear layer regions in the jet wake can dictate this selection upstream or it could be based upon
the dimensionless wall distance y+ value. The isosurface acts like a virtual geometry or a wrap around the real
domain (see 3(b)).

• The next step is approximation of the medial axis between the geometry and the distance field wrap. The
Voronoi diagram based algorithm of Dey and Zhao [26] is used here for the medial axis approximation. This
algorithm provides a more stable and continuous medial axis for complex 3D domains than the voxel thinning
approach. The input to this program is the point cloud data of the geometry and the distance field isosurface.
It makes use of the observation that certain Voronoi facets are positioned close to the medial axis if their dual
Delaunay edges tilt away from the surface or are very long. Hence, the angle condition and the ratio condition
are defined to filter such tilted and long Delaunay edges and the medial axis is approximated.
Let VP be the Voronoi diagram for a dense point set P from a smooth compact surface S ⊂ R3. This Vornoi
diagram is a cell complex comprising of Voronoi cells Vp p∈P and their facets, edges and vertices. Also, for each
point x ∈ S ,

Vp = x ∈ R3 |‖ p − x ‖≤‖ q − x ‖,∀q , p (2)

where p and q are any two points in P. Let DP be the Delaunay triangulation of P and dual to the Voronoi
complex. The Delaunay triangles incident to point p which are dual to the Voronoi edges intersected by a
tangent plane at p are used to construct the criteria. All the Delaunay edges that make relatively large angle
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with the planes of the triangles are filtered. If the angle between the vector tpq from p to q and the normal nptu

to a triangle ptu is less than a threshold angle π
2 − θ for all the triangles, then that associated Delaunay edge is

filtered i.e.

max∠nptu, tpq <
π

2
− θ (3)

where 0 < π
2 < θ. A value of θ = π

8 gives good results. The ratio condition is based on the comparison of
the length of the Delaunay edges with the circum-radii of the triangles. Thus those Delaunay edges are filtered
which satisfy the criteria:

min
‖p − q‖

R
> ρ (4)

where ‖p − q‖ defines the length of a Delaunay edge and ρ is the circum-radius of a triangle ptu. A value of
ρ = 8 is normally used for dense point clouds. The medial axis is generated as a continuous surface which can
be imported into the mesh generator. The medial axis for the JWF slice is shown in the Figure 3(c).

• To complete the blocking process, additional rules as described in the Section 1 are manually used. Applying
the rules, for example to the 2D JWF slice, the expansion features are connected to the nearest medial vertex or
otherwise the medial axis as shown in the Figure 3(d).

• Once the critical parts of the domain have been blocked using the medial axis, the far-field region can be
partitioned using simple Cartesian fitting or H-type blocks. This is shown, for example, in Figure 3(d) with the
green lines. This resulting domain decomposition is significantly better than the one obtained initially shown
in the Figure 2. There can still be some regions where the block topology is unsatisfactory. Such areas must
be manually altered. Hence, a semi automatic blocking process arises. The mesh is then generated in the
commercial program Pointwise [27].

(a) (b) (c) (d)

Fig. 3: Two dimensional jet-wing-flap geometry: (a) the distance field; (b) distance field wrap and (c) corresponding medial axis (d) hybrid blocking
around 2D geometry.

2.2. Hierarchical geometry handling

Modern day aero-engine design challenges demand performing realistic and multi-scale CFD simulations of strongly
coupled systems. This means that geometries are becoming highly complex and as a result more effort is consumed
in the mesh generation and flow modeling process. This can have a strong impact on the duration of the design op-
timization cycle. To this end, a combination of the high and low fidelity (structured multi-block) meshing/modeling
techniques can be employed using a hierarchy of the methods shown in the Figure 4. At the bottom of this hierarchy
is the smeared representation of the geometry through the use of the lower order methods such as immersed boundary
method (IBM) and body force model (BFM) [28,29]. Next in the hierarchy is the real geometry resolved by the over-
set meshes which present a useful option for integrating various domains together without adding extra complexity.
The information between the overlapping parts is exchanged through interpolation. At the top is the real geometry
meshed by, for example, node matching multi-block meshing methods. Therefore, as a cost effective alternative to
the fully resolved/meshed geometry, a combination of various high and low fidelity methods allows rapid addition
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and modeling of arbitrary geometry effects. This helps in reducing the design cycle time. The objective here is not to
present any novel mesh generation method but to apply a zonal/hierarchical approach to handle complex domains to
reduce the meshing effort (see Section 3.0.3). Such an approach can be efficiently used to rapidly explore the design
space and can aid the development of high fidelity numerical tools.

Fig. 4: Hierarchical geometry handling strategy.

2.2.1. Body force modeling
The engine-wing-flap geometry case to be presented later employs the hierarchical geometry handling approach

and uses a body force method to model the effect of the fan and outlet guide vanes [30]. This model is outlined next.
Assuming an infinite number of blades, the aerodynamic effects of a blade row are modeled using an axisymmetric

flow in each infinitesimal blade passage and the body forces are added as source terms. The parallel and normal
components of these forces in cylindrical coordinates system are given as:

Fp,x =
Kp

s
VxVrel, Fp,θ = −

Kp

s
VθVrel, Fp,r = −

Kp

s
VrVrel (5)

Fn,x =
Kn

s
Vθ

Vrel
f (Vx,Vθ, α), Fn,θ = −

Kn

s
Vx

Vrel
f (Vx,Vθ, α) (6)

Here, Vx,Vθ and Vr are the axial, tangential and radial velocity components. Vrel is the magnitude of the fluid
velocity relative to the blade. Kp and Kn are calibration constants. Also, α and s are the local blade metal angle and
blade pitch respectively. The above equations can also be modified to produce local blockage terms (see [31]).

3. Results

3.0.1. NASA CRM wing-body-tail
In this section, the hybrid blocking is applied to partition the domain around a 3D NASA Common Research Model

(CRM) horizontal wing-body-tail configuration. This model represents a modern, transonic and commercial aircraft
designed to cruise at M = 0.85 and CL = 0.5. The geometric and aerodynamic details about the model are described
in [32,33]. The configuration is shown in the Figure 5(a). The far-field is represented by a cube with boundaries ten
fuselage lengths away upstream and downstream and ten spans away from the symmetry plane. First, the distance
field wrap is computed around the model geometry which is shown in the Figure 5(b).

The medial axis is approximated around the model wrapped by the distance field isosurafce. A cut section of the
model geometry and the medial axis is shown in the Figure 5(c). As can be seen, the medial axis branches at the
wing-fuselage junction providing a useful block partitioning. The medial axis around the wing and tail also provides
a block topology similar to O-type or C-type meshes. To assist the blocking as shown in the Figure 6(a), expansion
features at the trailing edges of the wing and the tail are joined to the nearest medial axis . After the blocking around
the geometry is complete, the far-field domain partitioning is carried out. The region is partitioned to create a H-type
mesh. The block topology around the model is shown in the Figure 6(c). The volume and the surface mesh cuts are
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(a)
(b)

(c)

Fig. 5: NASA CRM: (a) wing-body-tail configuration (b) configuration with the distance field wrap (c) cut section with the medial axis.

(a)

(b)

(c) (d)

Fig. 6: NASA CRM wing-body-tail (a) blocking around the wing section (b) cell skewness histogram (c) hybrid blocking (d) mesh cut section.
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displayed in the Figure 6(d). The cell skewness histogram of the resulting mesh is shown in the Figure 6(b) where
approximately 85% of the cells have skewness value below 0.55 (the ideal value being zero).

The NASA CRM configuration has been the test case for the 4th and 5th AIAA CFD drag prediction workshops
[33,34]. The aim of the workshop is to assess the state-of-the-art in the CFD methods for aircraft aerodynamic
analysis. Here, we use the same flow conditions as given in the workshop to compute the flow around the test case.
The simulations are performed in HYDRA which is an unstructured, finite volume, edge-based and compressible flow
solver using MUSCL based flux differencing [35,36].

The simulation is carried out at M∞ = 0.85 and CL = 0.5 with Reynolds number of 5 × 106 based on the reference
chord length Cre f = 7.00532 m. Table 1 describes the free-stream flow conditions. A coarse mesh of approximately
4 million cells is used. The first grid node from the wall is located at y+ ≈ 1. The SpalartAllmaras (SA) turbulence
model is used for this simulation. The flow angle for this mesh to gain CL = 0.5 is α = 2.36o.

Table 1: NASA CRM free-stream conditions.

M∞ 0.85
Ptotal 201326.91 Pa
Ttotal 310.93 K

The pressure coefficients at locations 13.06%, 28.3% and 50.24% of the wing span is shown in the Figure 7(a-c).
The results are compared with the wind tunnel data at these locations. This experimental data is for CL values of 0.486
and 0.52 as shown in [34]. A good level of agreement with the measurements can be observed in these plots.

(a) (b) (c)

Fig. 7: NASA CRM wing-body-tail (a) pressure coefficients at 13.06% (b) 28.3% and (c) 50.24% of the wing span.

3.0.2. Jet-wing-flap
In this section, the 3D jet-wing-flap case is presented. The geometry comprises of co-axial nozzle, pylon and a wing

with a flap as shown in the Figure 8(a). This realistic aero-engine geometry has been used for detailed computational
aero-acoustics analysis, as presented, for example in [37,38]. The pylon adds complexity to the otherwise cylindrical
nozzle topology along with the wing and the flap. Hence, blocking such a case demands significant user insight.
After wrapping the distance field, the medial axis is approximated. This is shown in the Figure 8(b). To simplify
the blocking procedure, small medial axis branches are removed for this case. This is followed by the inner blocking
aided by the rules which is shown in the Figure 8(c).

The far-field domain decomposition can be then be carried out at this stage. However, one of the aims for the
aero-acoustic jet simulations is to properly resolve the shear layers in the far-field. This requires a good quality
mesh aligned with the shear layer regions. The current block topology as shown in the Figure 8(c) is non-optimal
for properly resolving the shear layers produced by the bypass and the core flows. Hence a manual alteration of
the blocking around the pylon and the core flow exhaust is performed. The modified inner block topology with the
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(a)
(b) (c)

Fig. 8: Jet-wing-flap (a) CAD (b) CAD and the medial axis cut section (c) inner hybrid blocking.

far-field decomposition are shown in the Figure 9(a). Different cut sections of the resulting mesh (20 million cells)
showing the surface and volume meshes are displayed in the Figures 9(c) and 9(d).

The cell skewness histogram is shown in the Figure 9(b) demonstrating that the mesh is of good quality. A RANS
simulation using the SST k − w is carried out on the mesh generated by the hybrid blocking. The first grid node from
the wall is located at y+ ≈ 1. The jet nozzle boundary conditions for this simulation are given in the Table 2. The
mean axial velocity contours at different axial planes are shown in the Figure 10. The results are compared with the
experimental data and those obtained from the hybrid RANS-LES simulation performed in [39]. Figure 11 shows an
encouraging match where the axial velocity profiles in z = 0 plane are plotted. Here, Uo is the bypass exit velocity
with value of approximately 300 m/s and D is the bypass jet diameter. The experimental data in these plots is for the
clean nozzle jet without the effect of wing and flap, hence a scatter between the CFD and measurements can be seen.

Table 2: Jet nozzle boundary conditions.

Bypass Core

Ptotal 171,600 Pa 164,000 Pa
Ttotal 335.0 K 889.0 K
ṁ 9.325 Kgs−1 1.633 Kgs−1

The two cases presented above show how the hybrid blocking approach can be effectively used to decompose and
mesh the complex geometries. The medial axis based domain decompositions also provide meshes having better flow
alignment, as shown in [24,25], when compared to other partitioning methods e.g. Cartesian fitting and cross field
based techniques. Hence, this technique further enhances the scope and applicability of these MAT based blocking
methods. Also, the blocking templates could be generated using this approach which can speed up the mesh generation
process and aid an inexperienced CFD user.

3.0.3. Engine-wing-flap
In the last section, a coaxial nozzle with pylon and wing geometry was presented which makes the rear or down-

stream part of the aero-engine. To carry out a more realistic simulation, the front engine part containing the axis-
symmetric intake, hub and splitter geometry is added to this rear part using the overset mesh at the interface. This
procedure avoids re-blocking the domains to have a cell to cell match between the two zones. Also, a smeared fan
geometry is used where the fan is modeled using the BFM (see the schematic in Figure 12(a)). The other downstream
components are imprinted and treated again with the BFM but with localized sources. These internal geometry com-
ponents include the downstream vanes, gearbox shaft, and the engine supporting A-frames. Thus using a hierarchical
geometry handling approach, a complex domain can be readily meshed and analyzed for in a design optimization
cycle.

A cut section of the mesh at z=0 plane is shown in the Figure 12(b). The total mesh size is 50 million. The internal
geometry in the front part is modeled using a body force model (see section 2.2.1) which has been extended in [40]
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(a)

(b)

(c) (d)

Fig. 9: Jet-wing-flap (a) modified inner blocking (to accommodate shear layers) with far-field block topology surface and volume mesh cut. (b)
cell skewness histogram (c) mesh cut section at z=0 (d) a surface and volume mesh cut.

to include the local blockage and wakes modeling. This is done by adding local enhanced source terms to generate
wake zones, which is similar to adding the source terms in the IBM for simulating geometry or boundary on a non-
conformal Cartesian mesh. A unified framework combining smeared geometry and the above mentioned crude IBM
has been presented recently in [28,29], which can be an area of future research.

4. Conclusions

In the first part of the paper, a hybrid blocking method is demonstrated that makes use of the distance field iso-
surafce to act as a virtual geometry for the subsequent medial axis computation. Additional rules and the H-type
blocking are employed to complete the block topology creation. This extends the original medial axis based method’s
ability to handle more complex geometries specially the external flows. Practical cases are included to demonstrate
the use of this novel method. The short comings of the method for highly complex geometries are also described

10 Copyright c© by Rolls-Royce plc



(a) (b)

Fig. 10: Jet-wing-flap mean axial velocity contours; (a) z=0 plane (b) y=0 plane.

Fig. 11: Jet-wing-flap axial velocity profiles.

(a)
(b)

Fig. 12: Engine-wing-flap (a) schematics showing geometric zones and domains with different block topologies (b) cut section at z=0 plane.

where manual alteration is required to resolve the important flow features. In the second part of the paper, an alter-
native to fully resolved and meshed geometry has been presented which handles the geometry by employing lower
order modeling, hybrid blocking and the overset meshes. This provides an efficient and cost effective approach for
addressing modern day meshing challenges and allows the rapid exploration of the design space.
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